
1

R Program Notes
Biostatistics: A Guide to Design, Analysis, and Discovery Second Edition
by Ronald N. Forthofer, Eun Sul Lee, Mike Hernandez
Chapter 3: Descriptive Statistics

Before discussing how to use R to summarize data and make graphs, we begin by looking at
how data can be read directly into R. Start by accessing the dig40.txt file from the companion
website and use an ASCII editor like notepad to view the contents of the file as shown below.
The data set is described in Table 3.1 Digoxin clinical trial data for 40 participants in the
textbook.

Next, launch the R program. Notice that R version 2.5.1 is displayed below; however, newer
versions become available periodically so you may be using a more recent version of the
software.

2

Select File -> New script to launch the R Editor.

3

Commands are written in the R Editor as shown below. To run the commands, highlight them

first then click the run button. The run button looks like this: .

4

As the commands in the R Editor above indicate, to create an R data frame we used the
read.table function in R. To do this, start by saving the data set dig40.txt to some auxiliary
drive, like the C drive. The text file should be opened and inspected. Check the data in the text
file to see if a header line is provided indicating the names of each of the variables in the data
set. In the case of the dig40.txt data set, the first line contains variable names therefore we
need to specify that the data contain a header. This is easily done within the read.table
command by including the option header = T. The command help(read.table) can be used to
access the R help documentation when needed.

5

R commands:

#Access the data directly from the book’s companion website

dig40 <- read.table(' http://www.biostat-edu.com/files/dig40.txt', header=T)
dig40

R output:

 id trtmt age race sex bmi creat sbp

1 2289 0 76 1 1 30.586 1.700 130

2 6745 0 45 1 1 22.850 1.398 130

3 1322 1 45 1 2 43.269 0.900 115

4 538 1 31 1 1 27.025 1.159 120

5 999 1 47 1 2 30.506 1.386 120

6 3103 0 60 1 1 29.867 1.091 140

7 1954 1 77 1 1 26.545 1.307 140

8 5750 1 76 1 1 39.837 1.455 140

9 1109 0 68 1 2 27.532 1.534 144

10 4787 1 46 1 1 28.662 1.307 140

11 666 0 65 1 1 28.058 2.000 120

12 6396 0 83 1 1 26.156 1.489 116

13 5753 1 75 1 1 37.590 1.300 138

14 1882 0 50 1 1 25.712 1.034 140

15 5663 0 59 2 1 27.406 1.705 152

16 6719 1 34 1 1 20.426 1.886 116

17 4995 0 55 1 1 19.435 1.600 150

18 4055 0 71 1 1 22.229 1.261 100

19 4554 1 58 1 2 28.192 1.352 130

20 2217 1 65 1 1 23.739 1.614 170

21 896 0 50 1 1 27.406 1.300 140

22 5368 1 38 1 1 30.853 0.900 134

23 3403 0 55 1 2 21.790 1.170 130

24 1426 0 70 1 1 19.040 1.250 150

25 764 1 63 2 2 28.731 0.900 122

26 5668 0 74 1 1 29.024 1.227 116

27 1653 1 63 1 1 28.399 1.100 105

28 1254 1 73 1 1 26.545 1.300 144

29 2312 0 78 2 1 22.503 2.682 104

30 2705 1 66 1 2 28.762 0.900 150

31 4181 0 44 2 2 26.370 1.148 124

32 3641 0 64 1 1 21.228 0.900 130

33 2439 1 49 1 1 15.204 1.307 140

34 3640 0 79 1 1 18.957 2.239 150

35 6646 0 61 1 1 27.718 1.659 128

36 787 0 58 2 2 27.369 0.909 100

37 5407 1 50 1 2 24.176 1.000 130

38 5001 1 70 1 1 19.044 1.200 110

39 4375 0 61 1 1 32.079 1.273 128

40 4326 0 65 1 1 29.340 1.200 170

To see a list of variable names in the dataset use the command names(dig40) as shown below.

6

R commands:

names(dig40)

R output:

[1] "id" "trtmt" "age" "race" "sex" "bmi" "creat" "sbp"

Suppose we are interested in seeing only the first 10 observations. This is easily accomplished
using the command dig40[1:10,] as shown below.

R commands:

dig40[1:10,]

R output:

 id trtmt age race sex bmi creat sbp

1 4995 0 55 1 1 19.435 1.600 150

2 2312 0 78 2 1 22.503 2.682 104

3 896 0 50 1 1 27.406 1.300 140

4 3103 0 60 1 1 29.867 1.091 140

5 538 1 31 1 1 27.025 1.159 120

6 1426 0 70 1 1 19.040 1.250 150

7 4787 1 46 1 1 28.662 1.307 140

8 5663 0 59 2 1 27.406 1.705 152

9 1109 0 68 1 2 27.532 1.534 144

10 666 0 65 1 1 28.058 2.000 120

7

Program Note 3.1 - Tabulating Data

By displaying the entire DIG40 data set, we are able to see the variables: treatment, age, race,
sex and some other characteristics for the forty participants in the data set. However, there is
also a need to summarize the information contained in the data set. For example, we may
want to know how many males and females are in the DIG40 data set. This would simply
require the creation of a table displaying the frequency of males and females which is referred
to as a one-way frequency table.

Below, we use the R function table() to show the frequency distribution for the variable sex
from the DIG40 data set.

R commands:

table(dig40$sex)

R output:

 1 2

30 10

The results from a two-way frequency table showing the cross-tabulation of sex and race are
shown below.

R commands:

table(dig40$sex, dig40$race)

R output:

 1 2

 1 28 2

 2 7 3

We can use the following R commands to assign the label “Male” to the value “1” and the label
“Female” to the value “2”.

R commands:

sex<- factor(dig40$sex, levels=c(1,2), labels=c("Male", "Female"))

table(sex)

R output:

sex

 Male Female

 30 10

8

We can use the following R commands to assign the label “White” to the value “1” and the
label “Nonwhite” to the value “2”. See Table 3.2 Frequencies of sex and race for 40 patients in
DIG40 in the textbook.

R commands:

race<- factor(dig40$race, levels=c(1,2), labels=c("White","Nonwhite"))

table(race)

R output:

race

 White Nonwhite

 35 5

To create categories for the continuous variable age, we start by creating a new variable called
age.cat as shown below. After assigning the values: 0, 1, 2, 3, and 4 to each of the age
categories, we assign labels to the categorical values using the R function: factor as shown
below. See Table 3.3 Frequency of age groups for 40 patients in DIG40 in the textbook.

R commands:

age.cat<-NA

age.cat[dig40$age<40]<-0

age.cat[dig40$age>=40 & dig40$age<50]<-1

age.cat[dig40$age>=50 & dig40$age<60]<-2

age.cat[dig40$age>=60 & dig40$age<70]<-3

age.cat[dig40$age>=70]<-4

age.cat<- factor(age.cat, levels=c(0,1,2,3,4), labels=c("Under 40", "40-

49","50-59", "60-69", "70-79"))

table(age.cat)

R output:

age.cat

Under 40 40-49 50-59 60-69 70-79

 3 6 8 11 12

A cross-tabulation of bmi.cat, the categorical variable for body mass index, and the variable sex
can be accomplished as shown below. See Table 3.4 Cross-tabulation of body mass index and
sex for 40 patients in DIG40 with column percentages in parentheses in the textbook.

9

R commands:

bmi.cat<-NA

bmi.cat[dig40$bmi<18.5]<-0

bmi.cat[dig40$bmi>=18.5 & dig40$bmi<24.9]<-1

bmi.cat[dig40$bmi>=25.0 & dig40$bmi<29.9]<-2

bmi.cat[dig40$bmi>=30]<-3

bmi.cat<- factor(bmi.cat, levels=c(0,1,2,3), labels=c("Underweight",

"Normal","Overweight", "Obese"))

sex<- factor(dig40$sex, levels=c(1,2), labels=c("Male", "Female"))

table(bmi.cat, sex)

R output:

 sex

bmi.cat Male Female

 Underweight 1 0

 Normal 10 2

 Overweight 14 6

 Obese 5 2

10

Program Note 3.2 - Creating Line graphs and Bar charts

1. Line graphs

In Table 3.6, we present health expenditures data as a percentage of GDP by year for Canada,
the United Kingdom, and the United States. The data are entered as shown below. Use the
type option to specify the desired plot. Options for plot types include following:

(Note: This information can be found by using the R command: help(plot))
“p” for points
“l” for lines
“b” for both
“c” for lines part alone of “b”
“o” for both “over-plotted”
“h” for “histogram” like vertical lines
“s” for steps
“n” for no plotting

The option lty allows you to specify a particular line pattern. For example, the option lty=1 will
produce a solid line while the option lty=2 produces a dashed line. The options xlab and ylab
are used to provide titles for the x- and y-axes, and the options xlim and ylim are used to
control the limits of the x- and y-axes. See Figure 3.1 Line graph: Health expenditures as
percentage of GDP for Canada, United Kingdom, and United States in the textbook.

R commands:

Year<- c(1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995, 2000)

Canada<- c(5.4, 5.6, 7.0, 7.0, 7.1, 8.0, 9.0, 9.2, 9.2)

United.Kingdom<- c(3.9, 4.1, 4.5, 5.5, 5.6, 6.0, 6.0, 7.0, 7.3)

United.States<- c(5.1, 6.0, 7.0, 8.4, 8.8, 10.6, 12.0, 13.4, 13.3)

plot(Canada ~ Year, type="l", lty=1, ylim=c(4,14), ylab=("Percentage of

GDP"))

points(United.Kingdom ~ Year, type="l", lty=2)

points(United.States ~ Year, type="l", lty=3)

legend(1960,14, c("Canada", "United Kingdom", "United States"),

lty=c(1,2,3))

R output:

11

2. Bar charts

For example, the horizontal bar chart in Figure 3.5 displays the proportion of patients with
diabetes in different age groups from the DIG200 data set. We use the R function barplot to
create bar charts. The option horiz when set equal to T transforms a vertical bar chart into a
horizontal bar chart. The option names.arg is used to specify names for each bar. Although
unnecessary, the col option allows the user to specify colors for each bar. (Note: More
information on creating bar charts can be obtained by running the R command: help(barplot))

Before we get to the commands that create a bar chart, we begin by reading the data from the
DIG200 data set using the following commands:

12

R commands:

#Access the data directly from the book’s companion website

dig200 <- read.table(' http://www.biostat-edu.com/files/DIG200.txt', header=T)
dig200

#Or from a directory on your computer

dig200 <- read.table('C:/DIG200.txt', header=T)

#--#

#Next, use the commands below to create the appropriate age categories:

age.cat<-NA

age.cat[dig200$age< 40]<-0

age.cat[dig200$age>=40 & dig200$age<50]<-1

age.cat[dig200$age>=50 & dig200$age<60]<-2

age.cat[dig200$age>=60 & dig200$age<70]<-3

age.cat[dig200$age>=70]<-4

#Finally, use the commands below to obtain the number of patients with

#diabetes in each age category:

table(dig200$diabetes, age.cat)

#The output should look as follows:

R output:

 age.cat

 0 1 2 3 4

 0 5 17 39 50 35

 1 2 6 13 16 17

Using the output, we calculated percentages by evaluating each of the following values: 2/7,
6/23, 13/52, 16/66, and 17/52. With this information, we are now able to create the variable
percent that contains the proportion of people with diabetes in each age category. See Figure
3.5 Bar chart showing proportion of people in each age group with diabetes, DIG200 in the
textbook.

R commands:

percent<-c(28.6, 26.1, 25.0, 24.2, 32.7)

barplot(percent, horiz=T,

names.arg=c("Under 40", "40-49", "50-59", "60-69", "70 & Over"),

xlab=("Percent with Diabetes"), xlim=c(0, 35), ylab=("Age Group")

col=c("lightblue", "mistyrose", "lightcyan", "lavender", "cornsilk"))

13

R output:

14

Program Note 3.3 – Creating histograms

Before we begin creating histograms, we would like to comment on our experience with R in
executing what would be considered simple data management in other statistical software
packages. For example, when we attempted to create the histogram for the systolic blood
pressure readings of participants in the DIG200 data set, the procedure was not
straightforward. To begin with, the variable sysbp in the DIG200 data set contains a missing
observation denoted by a period. You can see this by running the R commands below:

R commands:

#Access the data directly from the book’s companion website

dig200 <- read.table(' http://www.biostat-edu.com/files/DIG200.txt', header=T)
dig200

#Or from a directory on your computer

dig200 <- read.table('C:/DIG200.txt', header=T)

dig200$sysbp

#The commands above produce the following output:

R output:

 [1] 114 118 130 110 100 100 100 90 120 152 131 100 90 128 140 130 106 150

 [19] 100 100 110 120 130 116 140 95 140 116 170 104 120 116 140 120 95 110

 [37] 152 106 120 124 130 104 140 110 150 150 152 100 90 110 120 150 108 144

 [55] 100 110 128 130 120 170 100 140 150 145 114 100 140 120 110 116 170 140

 [73] 170 128 120 124 126 124 162 110 130 . 130 140 118 120 85 139 140 150

 [91] 130 130 140 110 120 120 140 96 130 116 100 120 135 130 140 90 118 110

[109] 120 125 114 140 150 130 110 130 150 118 110 115 132 160 150 170 105 150

[127] 130 100 120 100 140 125 108 160 142 120 140 130 130 148 110 90 140 155

[145] 140 116 122 114 120 116 140 122 130 150 144 120 130 120 150 130 160 116

[163] 102 120 130 138 100 139 130 120 135 140 140 136 114 120 110 130 125 110

[181] 118 165 115 122 124 120 140 120 112 134 120 140 110 140 122 140 132 144

[199] 140 130

43 Levels: . 100 102 104 105 106 108 110 112 114 115 116 118 120 122 ... 96

Notice that observation 82 is a “.” indicating that the value for observation 82 is missing. Below
are the same commands we have already shown you; however, we have used screenshots to
show how the output should appear in R.

15

The next few screenshots are used to show how you can remedy the missing value problem by
using the Data editor… under the Edit option in R’s menu bar.

16

At this point, the Question box will appear asking for the name of the data set you would like to
access as shown below.

17

After clicking OK, the R Data Editor will launch. Search for the variable sysbp and double-click
on the column name in the gray area to launch the R Variable editor. Now, you can change the
type from character to numeric as shown below.

18

Finally, proceed with the following R commands to create a frequency histogram. See Figure
3.8 Histogram of 199 systolic blood pressure values using 9 intervals of size 10 starting at 85
in the textbook.

R commands:

syshist<-hist(dig200$sysbp, breaks=c(85,95,105,115,125,135,145,155,165,175),

 ylim=c(0,50), xlab="Systolic Blood Pressure (mmHg)", main=" ", axes=F,

 right=F, col="gray")

axis(1, at=c(85,95,105,115,125,135,145,155,165,175))

axis(2, at=c(0,10,20,30,40,50))

text(syshist$mids, syshist$counts+2, label=c(syshist$counts))

R output:

19

20

Program Note 3.4 – Creating stem and leaf plots and scatter plots

1. Stem and Leaf plots

Using the DIG40 data set, a stem and leaf plot for systolic blood pressure readings can be
created with R as shown below.

R commands:

stem(dig40$sbp)

R output:

 The decimal point is 1 digit(s) to the right of the |

 10 | 0045

 11 | 05666

 12 | 0002488

 13 | 00000048

 14 | 000000044

 15 | 00002

 16 |

 17 | 00

2. Scatter plots

In Figure 3.12, we use a scatter plot to examine the relationship between serum creatinine and
systolic blood pressure using the DIG40 data set.

R commands:

plot(dig40$creat~dig40$sbp,xlab="Systolic Blood Pressure (mmHg)", ylab="Serum

Creatinine (mg/dL)")

R output:

21

22

Program Note 3.5 – Descriptive statistics and creating box plots

1. Descriptive Statistics

R can be used to get the mean, standard deviation, median, and range for systolic blood
pressure for patients from the DIG40 data set.

R commands:

mean(dig40$sbp)

sd(dig40$sbp)

median(dig40$sbp)

min(dig40$sbp)

max(dig40$sbp)

R output:

> mean(dig40$sbp)

[1] 131.4

> sd(dig40$sbp)

[1] 16.87024

> median(dig40$sbp)

[1] 130

> min(dig40$sbp)

[1] 100

> max(dig40$sbp)

[1] 170

2. Box plots

Below we show the R commands used to create the box plot like the one shown in Figure 3.14
in the textbook using the DIG40 data set.

R commands:

dig40 <- read.table('C:/dig40.txt', header=T)

boxplot(dig40$sbp,ylab="Systolic Blood Pressure (mmHg)")

R output:

23

One way to create the box plots displayed in Example 3.13 in the textbook is shown below.

R commands:

#Access the data directly from the book’s companion website

dig40 <- read.table(' http://www.biostat-edu.com/files/dig40.txt', header=T)

age.cat<-NA

age.cat[dig40$age<60]<-0

age.cat[dig40$age>=60]<-1

age.cat<- factor(age.cat, levels=c(0,1), labels=c("Under 60", "60 & Over"))

boxplot(dig40$sbp~age.cat,ylab="Systolic Blood Pressure (mmHg)")

24

R Output:

25

Program Note 3.6 – Calculating Pearson and Spearman correlation coefficients

Below are the data used in Example 3.18 in the textbook:

Systolic blood pressure: 120 118 130 140 140 128 140 140 120 128 124 135

Diastolic blood pressure: 60 60 68 90 80 75 94 80 60 80 70 85

The R commands below show how the blood pressure data can be read directly into R along
with the commands to create a scatter plot like the one presented in Example 3.18 in textbook.

R commands:

sysbp<- c(120, 118, 130, 140, 140, 128, 140, 140, 120, 128, 124, 135)

diabp<- c(60, 60, 68, 90, 80, 75, 94, 80, 60, 80, 70, 85)

Scatter plot of systolic blood pressure versus diastolic blood pressure

plot(diabp,sysbp,xlab="Diastolic Blood Pressure (mmHg)",

 ylab="Systolic Blood Pressure (mmHg)")

R output:

26

The R commands below are used to calculate both Pearson’s correlation coefficient and
Spearman’s correlation coefficient. See Example 3.20 in textbook.

R commands:

sysbp<- c(120, 118, 130, 140, 140, 128, 140, 140, 120, 128, 124, 135)

diabp<- c(60, 60, 68, 90, 80, 75, 94, 80, 60, 80, 70, 85)

Pearson correlation coefficient

cor.test(diabp, sysbp)

Spearman correlation coefficient

cor.test(diabp, sysbp, method="spearman")

27

R output:

 Pearson's product-moment correlation

data: diabp and sysbp

t = 6.2946, df = 10, p-value = 8.971e-05

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

 0.6561730 0.9700242

sample estimates:

 cor

0.8935738

 Spearman's rank correlation rho

data: diabp and sysbp

S = 38.3341, p-value = 0.0002709

alternative hypothesis: true rho is not equal to 0

sample estimates:

 rho

0.8659648

